本次服务由安徽南国冷热综合能源有限公司(点击了解详情)冠名赞助

该公司主要业务范围为:区域集中供冷供暖智慧运营、能源互联网、建筑及工业节能、数据中心供冷及应急冷源建设、集成电路无尘车间、手术室实验室净化工程、中央空调工程、智能化工程、信息化系统集成等高新技术服务。

作者 | Guanhong Feng Tianfu Xu Yue’an Zhao Fabrizio Gherardi

标题 | Heat mining from super-hot horizons of the Larderello geothermal field, Italy

来源 | Renewable Energy

编辑 | 地热小芯(添加微信号:geothermalAI,可获得相关资料)

这是地热能在线AI地热小芯编辑的第1篇文章

01

全文导读

超高温岩石地热能是一种新兴的可再生无碳能源。本文首次尝试探索储层-井筒耦合系统中的流体和热流动力学,以评估超高温(>450°C)增强型地热系统(EGS)的发电性能。我们开发了一种高性能代码,并基于意大利拉德雷洛最近完成的深钻项目数据,构建了一个三维井筒-储层耦合模型。超高温EGS的一般模式表现为显著的温度下降(>60°C),之后生产流体从蒸汽演变为两相混合物,直至运行期结束。储层压力成为决定两相混合物温度的关键参数。通过真实捕捉运行过程中由耦合热水力过程驱动的相变,我们的数值模型预测了比基于超简化模型的先前尝试更低的发电效率。尽管这种建模方法最终用于评估特定系统的热力学可行性,但它提供了关于地壳中基本热水力过程的一般信息,这些信息可能适用于其他地区类似EGS项目的设计。

在本文中,我们通过热水力建模探讨了意大利拉德雷洛地热田深处超高温EGS的可行性。数值模拟的双重目的是:(i)深入了解与中地壳深度地热双井运行相关的流体和热传输的基本过程;(ii)初步评估长期用于常规水热资源开采的类似项目的热力学可行性。这一技术挑战响应了延长拉德雷洛地热田寿命并可能以可持续方式增加其生产力的需求。

尽管当前的近似,数值模拟揭示了在超临界地热条件下预期的基本热水力过程。这些信息不仅适用于拉德雷洛,也适用于其他中地壳深度的类似环境,以定义最适合的技术以保证电站的可持续运行,并适应地热双井可能下降的生产力的地面设备/技术。主要结果如下:

  • 在本研究考虑的条件下,地热双井大约十年产生蒸汽相。在12.5 kg/s的运行质量流率下,发电量可达6.5 MWe,相应的发电效率为0.52 MWe×s×kg-1,没有之前超简化模型计算的那么高。
  • 预测在两相条件开始时,出流温度会出现大于60°C的急剧下降,主要是由于饱和温度与储层原始温度之间的差异所引起。之后,出流在剩余的运行期间呈现为两相混合物,其温度由储层压力决定;
  • 储层压力成为控制系统热水力演变的关键因素,因为压力可以决定相变的时间和出流温度。一般来说,较高的储层压力有利于抵消温度下降并改善流体流动性;
  • 超高温EGS工程需要补偿性注入方案。需要仔细优化注入和生产流量,以减少可能对井口压力和温度产生不利影响的摩擦损失,从而影响整个能量转换过程。

02

HIGHLIGHT图片

Fig. 1 . Location map of the Larderello geothermal field (a) and temperature vs depth diagram of temperature values measured along the vertical profile of the Venelle 2 well (empty squares; b). Curves for temperature (T, red), pressure (P, blue), and steam saturation (S steam , green) calculated values are also provided (more details in the Supplementary Materials).

Fig. 2 . 3-D and X-Z 2-D view of the conceptual model of fractured reservoir.

Fig. 3 . Pressure, temperature, and steam saturation evolution at two observational points located at the top and the bottom of the fractured reservoir, along the production well. (a) Patterns over 100 years production. (b) Detail of first 17 years production.

Fig. 4 . Temperature, pressure and steam saturation along the line connecting the bottom hole of the injection (point “a”) and production (point “d”) wells after two selected times (3.7 and 6.5 years) close to the second temperature drop. Points marked “b” (x coordinate −120 m) and “c” (x coordinate +20 m) locate at intermediate distances between the two wells.

Fig. 5 . Temperature and steam saturation distribution along the X-Z cross-section connecting the injection and production wells after 30 years.

Fig. 6 . (a) Pressure, temperature, and steam saturation evolution at the production wellhead; (b) production flow rate and recovery percentage of injected water.

Fig. 7 . Pressure (a), temperature (b), steam saturation (c), and mixture density (d) evolution in the production well.

Fig. 8 . Fluid specific enthalpy (kJ/kg) range of currently operating geothermal power plants (modified after [ 57 ]).

Fig. 9 . Temporal evolution of heat flow (a), thermal and power generation, and conversion efficiency (b).

Fig. 10 . Temporal evolution of heat flow (a), thermal and power generation, and conversion efficiency (b) for different permeability cases.

Fig. 11 . Pressure (a) and temperature (b) patterns at the production wellhead under different conditions of fracture permeability.

Fig. 12 . Contribution of different mechanisms to the pressure change for different permeability values after 3.5 and 20 years.

Fig. 13 . Phase mobility contours under different pressure and temperature conditions.

免责声明:本文仅用于学术交流和传播,不构成投资建议

——-

参考资料:

[1]
G.Ó. Friðleifsson, W.A. Elders
The Iceland Deep Drilling Project: a search for deep unconventional geothermal resources
Geothermics, 34 (3) (2005), pp. 269-285, 10.1016/j.geothermics.2004.11.004
View PDFView articleView in ScopusGoogle Scholar

[2]
G.Ó. Friðleifsson, W.A. Elders, A. Albertsson
The concept of the Iceland deep drilling project
Geothermics, 49 (2014), pp. 2-8, 10.1016/j.geothermics.2013.03.004
View PDFView articleGoogle Scholar

[3]
H. Asanuma, H. Muraoka, N. Tsuchiya, H. Ito
The concept of the Japan Beyond-Brittle Project (JBBP) to develop EGS reservoirs in ductile zones
GRC Transactions, 36 (2012), pp. 359-364
View in ScopusGoogle Scholar

[4]
T.T. Cladouhos, S. Petty, A. Bonneville, A. Schultz, C.F. Sorlie
Super Hot EGS and the Newberry Deep Drilling Project
(2018)
Google Scholar

[5]
G. Bignall
Hotter and deeper: New Zealand’s research programme to harness its deep geothermal resources
Proc. World Geoth. Cong. (2010)
Google Scholar

[6]
F. Batini, P.D. Burgassi, G.M. Cameli, R. Nicolich, P. Squarci
Contribution to the Study of the Deep Lithospheric Profiles: “deep” Reflecting Horizons in Larderello-Travale Geothermal Field
(1978)
Google Scholar

[7]
F. Batini, G. Bertini, G. Gianelli, E. Pandeli, M. Puxeddu
Deep structure of the Larderello field: contribution from recent geophysical and geological data
Soc. Geol. Ital. Mem., 25 (1983), pp. 219-235
Google Scholar

[8]
F. Batini, R. Nicolich
P and S reflection seismic profiling and well logging in the travale geothermal field
Geothermics, 14 (5) (1985), pp. 731-747, 10.1016/0375-6505(85)90049-5
View PDFView articleView in ScopusGoogle Scholar

[9]
R Bertani, H Büsing, S Buske, A Dini, M Hjelstuen, M Luchini, et al.
The first results of the Descramble project
Proc. 43rd Workshop on Geothermal Reservoir Engineering, Stanford, California, February 12-14, 2018 (2018)
SGP-TR-213, 16 pp
Google Scholar

[10]
G. Magro, F. Gherardi, G. Giudetti, M. Costantino, E. Carcione
DESCRAMBLE project: gas logging while drilling the Venelle_2 geothermal well (Larderello, Italy)
Proceedings of the World Geothermal Congress 2020+1 (2021)
Reykjavik, Iceland, April-October
Google Scholar

[11]
G. Magro, E. Droghieri, F. Gherardi
Drilling super-hot horizons of the Larderello geothermal field: insights from noble gases
E3S Web Conf., 98 (2019), Article 12012
CrossRefView in ScopusGoogle Scholar

[12]
K. Pruess, C. Oldenburg, G. Moridis
TOUGH2 User’s Guide, Version 2.0. Report LBNL-43134
Lawrence Berkeley National Laboratory, Berkeley, Calif (1999)
Google Scholar

[13]
G. Lavecchia, F. Stoppa
The Tyrrhenian zone: a case of lithosphere extension control of intra-continental magmatism
Earth Planet Sci. Lett., 99 (4) (1990), pp. 336-350, 10.1016/0012-821X(90)90138-N
View PDFView articleView in ScopusGoogle Scholar

[14]
G. Serri, F. Innocenti, P. Manetti
Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy
Tectonophysics, 223 (1) (1993), pp. 117-147, 10.1016/0040-1951(93)90161-C
View PDFView articleView in ScopusGoogle Scholar

[15]
L. Carmignani, F.A. Decandia, P.L. Fantozzi, A. Lazzarotto, D. Liotta, M. Meccheri
Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy)
Tectonophysics, 238 (1) (1994), pp. 295-315, 10.1016/0040-1951(94)90061-2
View PDFView articleView in ScopusGoogle Scholar

[16]
L. Jolivet, J.M. Daniel, C. Truffert, B. Goffé
Exhumation of deep crustal metamorphic rocks and crustal extension in arc and back-arc regions
Lithos, 33 (1) (1994), pp. 3-30, 10.1016/0024-4937(94)90051-5
View PDFView articleView in ScopusGoogle Scholar

[17]
R.D. Dallmeyer, D. Liotta
Extension, uplift of rocks and cooling ages in thinned crustal provinces: the Larderello geothermal area (inner Northern Apennines, Italy)
Geol. Mag., 135 (2) (1998), pp. 193-202, 10.1017/S0016756898008309
View in ScopusGoogle Scholar

[18]
B. Della Vedova, S. Bellani, G. Pellis, P. Squarci
Deep temperatures and surface heat flow distribution
G.B. Vai, I.P. Martini (Eds.), Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins, Springer Netherlands, Dordrecht (2001), pp. 65-76
Google Scholar

[19]
S. Bellani, A. Brogi, A. Lazzarotto, D. Liotta, G. Ranalli
Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow
J. Volcanol. Geoth. Res., 132 (1) (2004), pp. 15-29, 10.1016/S0377-0273(03)00418-9
View PDFView articleView in ScopusGoogle Scholar

[20]
G. Bertini, M. Casini, G. Gianelli, E. Pandeli
Geological structure of a long-living geothermal system
Larderello, Italy. Terra Nova., 18 (3) (2006), pp. 163-169, 10.1111/j.1365-3121.2006.00676.x
View in ScopusGoogle Scholar

[21]
G.M. Cameli, I. Dini, D. Liotta
Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (Southern Tuscany, Italy)
Tectonophysics, 224 (4) (1993), pp. 413-423, 10.1016/0040-1951(93)90041-H
View PDFView articleView in ScopusGoogle Scholar

[22]
G. Cameli
Brittle/ductile boundary from seismic reflection lines of southern Tuscany (Northern Apennines, Italy)
Mem. Soc. Geol. It, 52 (1998), pp. 153-162
Google Scholar

[23]
F. Batini, G. Bertini, G. Gianelli, E. Pandeli, M. Puxeddu, I. Villa
Deep structure, age and evolution of the Larderello-Travale geothermal field
GRC Transactions, 9 (1985), pp. 253-259
View in ScopusGoogle Scholar

[24]
B.L. Cox, K. Pruess
Numerical experiments on convective heat transfer in water saturated porous media at near-critical conditions
Transport Porous Media, 5 (3) (1990), pp. 299-323
View in ScopusGoogle Scholar

[25]
W.M. Kissling
Extending MULKOM to super-critical temperatures and pressures
Proc. WGC 1995 (1995), pp. 1687-1690
Firenze, Italy
Google Scholar

[26]
T.H. Brikowski
Modeling supercritical systems with TOUGH2: preliminary results using the EOS1SC equation of state module
Proc. 26th Work. Geoth. Res. Eng, Stanford University, Stanford, CA (2001)
Google Scholar

[27]
A.E. Croucher, M.J. O’Sullivan
Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems
Geothermics, 37 (2008), pp. 622-634, 10.1016/j.geothermics.2008.03.005
View PDFView articleView in ScopusGoogle Scholar

[28]
L. Magnusdottir, S. Finsterle
An iTOUGH2 equation-of-state module for modeling supercritical conditions in geothermal reservoirs
Geothermics, 57 (2015), pp. 8-17, 10.1016/j.geothermics.2015.05.003
View PDFView articleView in ScopusGoogle Scholar

[29]
W.M. Kissling
Transport of three-phase hyper-saline brines in porous media: theory and code implementation
Transport Porous Media, 61 (2005), pp. 25-44
CrossRefView in ScopusGoogle Scholar

[30]
R. McKibbin, A. McNabb
Deep hydrothermal systems: mathematical modeling of hot dense brines containing noncondensible gases
J. Porous Media, 2 (1) (1999), pp. 107-126
View in ScopusGoogle Scholar

[31]
J. O’Sullivan, M.J. O’Sullivan, A. Croucher
Improvements to the AUTOUGH2 supercritical simulator with extension to the air-water equation-of-State
GRC Transactions, 40 (2016), pp. 921-930
View in ScopusGoogle Scholar

[32]
Gudmundsdottir H, Jonsson MT, Palsson H. The wellbore simulator FloWell. Conference The wellbore simulator FloWell.
Google Scholar

[33]
A. Goldszal, J.I. Monsen, T.J. Danielson, K.M. Bansal, Z.L. Yang, S.T. Johansen, et al.
Ledaflow 1D: Simulation Results with Multiphase Gas/Condensate and Oil/Gas Field Data
(2007)
Google Scholar

[34]
A. Battistelli, S. Finsterle, M. Marcolini, L. Pan
Modeling of coupled wellbore-reservoir flow in steam-like supercritical geothermal systems
Geothermics, 86 (2020), Article 101793, 10.1016/j.geothermics.2019.101793
View PDFView articleView in ScopusGoogle Scholar

[35]
L. Pan, C.M. Oldenburg, Y.-S. Wu, K. Pruess
T2Well/ECO2N Version 1.0: Multiphase and Non-isonthermal Model for Coupled Wellbore-Reservoir Flow of Carbon Dioxide and Variable Salinity Water. LBNL-4291E
Lawrence Berkeley National Laboratory, Berkeley, Calif (2011)
Google Scholar

[36]
L. Pan, C.M. Oldenburg
T2Well—an integrated wellbore–reservoir simulator
Comput. Geosci., 65 (2014), pp. 46-55, 10.1016/j.cageo.2013.06.005
View PDFView articleView in ScopusGoogle Scholar

[37]
G. Feng, Y. Wang, T. Xu, F. Wang, Y. Shi
Multiphase flow modeling and energy extraction performance for supercritical geothermal systems
Renew. Energy, 173 (2021), pp. 442-454, 10.1016/j.renene.2021.03.107
View PDFView articleView in ScopusGoogle Scholar

[38]
G. Feng, T. Xu, F. Gherardi, Z. Jiang, S. Bellani
Geothermal assessment of the Pisa plain, Italy: coupled thermal and hydraulic modeling
Renew. Energy, 111 (2017), pp. 416-427, 10.1016/j.renene.2017.04.034
View PDFView articleView in ScopusGoogle Scholar

[39]
K. Zhang, Y.S. Wu, K. Pruess
User’s Guide for TOUGH2-MP -a Massively Parallel Version of the TOUGH2 Code. Report LBNL-315E
Lawrence Berkeley National Laboratory, Berkeley, Calif (2008)
Google Scholar

[40]
N. Zuber, J.A. Findlay
Average volumetric concentration in two-phase flow systems
J. Heat Tran., 87 (4) (1965), pp. 453-468
CrossRefView in ScopusGoogle Scholar

[41]
H. Shi, J.A. Holmes, L.J. Durlofsky, K. Aziz, L. Diaz, B. Alkaya, et al.
Drift-flux modeling of two-phase flow in wellbores
SPE J., 10 (2005), pp. 24-33
01
View in ScopusGoogle Scholar

[42]
J. Rutqvist, P.F. Dobson, J. Garcia, C. Hartline, P. Jeanne, C.M. Oldenburg, et al.
The northwest Geysers EGS demonstration project, California: pre-stimulation modeling and interpretation of the stimulation
Math. Geosci., 47 (1) (2015), pp. 3-29
CrossRefView in ScopusGoogle Scholar

[43]
Y. Yuan, T. Xu, J. Moore, H. Lei, B. Feng
Coupled thermo–hydro–mechanical modeling of hydro-shearing stimulation in an enhanced geothermal system in the raft river geothermal field, USA
Rock Mech. Rock Eng., 53 (12) (2020), pp. 5371-5388
CrossRefView in ScopusGoogle Scholar

[44]
A. Ebigbo, J. Niederau, G. Marquart, I. Dini, M. Thorwart, W. Rabbel, et al.
Influence of depth, temperature, and structure of a crustal heat source on the geothermal reservoirs of Tuscany: numerical modelling and sensitivity study
Geoth. Energy, 4 (1) (2016), pp. 1-29
Google Scholar

[45]
A. Morin, B.T. LØvfall, E. Meese
Simulation of Supercritical Water Flow in the Venelle 2 Well
(2016)
Google Scholar

[46]
H.J. Ramey Jr.
Wellbore heat transmission
J. Petrol. Technol., 225 (1962), pp. 427-435
View in ScopusGoogle Scholar

[47]
G.S. Bödvarsson, C.F. Tsang
Injection and thermal breakthrough in fractured geothermal reservoirs
J. Geophys. Res. Solid Earth, 87 (B2) (1982), pp. 1031-1048, 10.1029/JB087iB02p01031
View in ScopusGoogle Scholar

[48]
S.K. Garg, J.W. Pritchett
Pressure transient analysis for two-phase geothermal wells: some numerical results
Water Resour. Res., 20 (7) (1984), pp. 963-970, 10.1029/WR020i007p00963
View in ScopusGoogle Scholar

[49]
M. O’Sullivan
Aspects of geothermal well test analysis in fractured reservoirs
Transport Porous Media, 2 (5) (1987), pp. 497-517
View in ScopusGoogle Scholar

[50]
M.C. Leverett
Capillary behavior in porous solids
Trans. AIME, 142 (1941), pp. 152-169, 10.2118/941152-g
01
Google Scholar

[51]
A. Battistelli, D. Swenson, A. Alcott
Improved PetraSim-TOUGH2 capabilities for the simulation of geothermal reservoirs
Proc. 42nd Workshop on Geothermal Reservoir Engineering, Stanford, California, February 13-15, 2017 (2017)
SGP-TR-212, 14 pp
Google Scholar

[52]
H.I. Stone
Probability model for estimating three-phase relative permeability
J. Petrol. Technol., 22 (2) (1970), pp. 214-218
Google Scholar

[53]
A.T. Corey
The interrelation between gas and oil relative permeabilities
Prod. Mon., 19 (1) (1954), pp. 38-41
Google Scholar

[54]
M.T. Van Genuchten
A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
Soil Sci. Soc. Am. J., 44 (44) (1980), pp. 892-898
CrossRefView in ScopusGoogle Scholar

[55]
K. Pruess
Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon
Geothermics, 35 (4) (2006), pp. 351-367, 10.1016/j.geothermics.2006.08.002
View PDFView articleView in ScopusGoogle Scholar

[56]
T. Xu, Y. Yuan, X. Jia, Y. Lei, S. Li, B. Feng, et al.
Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: a case study in the Gonghe Basin, Qinghai Province, China
Energy (Oxford), 148 (2018), pp. 196-207, 10.1016/j.energy.2018.01.135
View PDFView articleView in ScopusGoogle Scholar

[57]
S.J. Zarrouk, H. Moon
Efficiency of geothermal power plants: a worldwide review
Geothermics, 51 (2014), pp. 142-153, 10.1016/j.geothermics.2013.11.001
View PDFView articleView in ScopusGoogle Scholar

[58]
P. Rose, J.M. Moore, J. Bradford, M. Mella, B. Ayling, J. McLennan
Tracer testing to characterize hydraulic stimulation experiments at the raft river EGS demonstration site
GRC Transactions, 41 (2017)
26-6
Google Scholar

[59]
B. Sanjuan, J.-L. Pinault, P. Rose, A. Gérard, M. Brach, G. Braibant, et al.
Tracer testing of the geothermal heat exchanger at Soultz-sous-Forêts (France) between 2000 and 2005
Geothermics, 35 (5) (2006), pp. 622-653, 10.1016/j.geothermics.2006.09.007
View PDFView articleView in ScopusGoogle Scholar

[60]
B.F. Ayling, R.A. Hogarth, P.E. Rose
Tracer testing at the Habanero EGS site, central Australia
Geothermics, 63 (2016), pp. 15-26, 10.1016/j.geothermics.2015.03.008
View PDFView articleView in ScopusGoogle Scholar

[61]
R. Egert, M.G. Korzani, S. Held, T. Kohl
Implications on large-scale flow of the fractured EGS reservoir Soultz inferred from hydraulic data and tracer experiments
Geothermics, 84 (2020), Article 101749, 10.1016/j.geothermics.2019.101749
View PDFView articleView in ScopusGoogle Scholar

[62]
T. Xu, X. Liang, Y. Xia, Z. Jiang, F. Gherardi
Performance evaluation of the Habanero enhanced geothermal system, Australia: optimization based on tracer and induced micro-seismicity data
Renew. Energy, 181 (2022), pp. 1197-1208, 10.1016/j.renene.2021.09.111
View PDFView articleView in ScopusGoogle Scholar

[63]
J.P. Brill, H.K. Mukherjee
Multiphase Flow in Wells
Society of Petroleum Engineers (1999)
Google Scholar